3.199 \(\int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)} \, dx\)

Optimal. Leaf size=116 \[ \frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}+\frac {3 \sqrt {a} \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{4 d}+\frac {3 a \sin (c+d x) \sqrt {\cos (c+d x)}}{4 d \sqrt {a \cos (c+d x)+a}} \]

[Out]

3/4*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))*a^(1/2)/d+1/2*a*cos(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*cos(d
*x+c))^(1/2)+3/4*a*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {2770, 2774, 216} \[ \frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}+\frac {3 \sqrt {a} \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{4 d}+\frac {3 a \sin (c+d x) \sqrt {\cos (c+d x)}}{4 d \sqrt {a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(3*Sqrt[a]*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(4*d) + (3*a*Sqrt[Cos[c + d*x]]*Sin[c + d*
x])/(4*d*Sqrt[a + a*Cos[c + d*x]]) + (a*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*Sqrt[a + a*Cos[c + d*x]])

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2770

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(-2*b*Cos[e + f*x]*(c + d*Sin[e + f*x])^n)/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[(2*n*(b*c + a*d)
)/(b*(2*n + 1)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}
, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && IntegerQ[2*n]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rubi steps

\begin {align*} \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)} \, dx &=\frac {a \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}+\frac {3}{4} \int \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \, dx\\ &=\frac {3 a \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}+\frac {3}{8} \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {3 a \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}-\frac {3 \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}\\ &=\frac {3 \sqrt {a} \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}+\frac {3 a \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.21, size = 91, normalized size = 0.78 \[ \frac {\sec \left (\frac {1}{2} (c+d x)\right ) \sqrt {a (\cos (c+d x)+1)} \left (3 \sqrt {2} \sin ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 \left (2 \sin \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {3}{2} (c+d x)\right )\right ) \sqrt {\cos (c+d x)}\right )}{8 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(3*Sqrt[2]*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]] + 2*Sqrt[Cos[c + d*x]
]*(2*Sin[(c + d*x)/2] + Sin[(3*(c + d*x))/2])))/(8*d)

________________________________________________________________________________________

fricas [A]  time = 1.75, size = 98, normalized size = 0.84 \[ \frac {\sqrt {a \cos \left (d x + c\right ) + a} {\left (2 \, \cos \left (d x + c\right ) + 3\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 3 \, \sqrt {a} {\left (\cos \left (d x + c\right ) + 1\right )} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{4 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*(sqrt(a*cos(d*x + c) + a)*(2*cos(d*x + c) + 3)*sqrt(cos(d*x + c))*sin(d*x + c) - 3*sqrt(a)*(cos(d*x + c) +
 1)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(d*cos(d*x + c) + d)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.17, size = 161, normalized size = 1.39 \[ \frac {\left (\cos ^{\frac {3}{2}}\left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (-1+\cos \left (d x +c \right )\right )^{2} \left (2 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \sin \left (d x +c \right )+3 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+3 \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right )\right )}{4 d \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \sin \left (d x +c \right )^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^(1/2),x)

[Out]

1/4/d*cos(d*x+c)^(3/2)*(a*(1+cos(d*x+c)))^(1/2)*(-1+cos(d*x+c))^2*(2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x
+c)*sin(d*x+c)+3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+3*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^
(1/2)/cos(d*x+c)))/(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)/sin(d*x+c)^4

________________________________________________________________________________________

maxima [B]  time = 1.71, size = 1059, normalized size = 9.13 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/16*(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*((cos(1/2*arctan2(sin(2*d*x +
 2*c), cos(2*d*x + 2*c)))*sin(2*d*x + 2*c) - (cos(2*d*x + 2*c) - 2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*
x + 2*c))) + sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + ((cos(2*d*x + 2*c) -
 2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c),
cos(2*d*x + 2*c))) - cos(2*d*x + 2*c) + 2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) +
 3*sqrt(a)*(arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(
sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x +
 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*
c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*
x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c)
+ 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d
*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2
*d*x + 2*c)))) - 1) - arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*
c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + arctan2((cos(2*d*x + 2*c)^2 + si
n(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (co
s(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*
d*x + 2*c) + 1)) - 1)))/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {a+a\,\cos \left (c+d\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \cos ^{\frac {3}{2}}{\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a*(cos(c + d*x) + 1))*cos(c + d*x)**(3/2), x)

________________________________________________________________________________________